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Hanbury Brown and Twiss with the
Narrabri Stellar Intensity Interferometer

A Pioneered by Robert Hanbury Brown and Richard Twiss @ initially used in
radio -astronomy to measure angular sizes of two prominent radio sources:
Cygnus A and Cassiopeia A




Hanbury Brown and Twiss with the
Narrabri Stellar Intensity Interferometer

A Pioneered by Robert Hanbury Brown and Richard Twiss @ initially used in
radio -astronomy to measure angular sizes of two prominent radio sources:
Cygnus A and Cassiopeia A

A They developed a theory of intensity interferometry using light waves,
leading to the development of the Narrabri Stellar Intensity Interferometer
from 1963-1974

1 It produced reliable measurements and displayed the potential for astronomical
interferometry & measured angular size of stars down to 2.5 magnitude

Picture retrieved from: https://www.astronomaestro.com/2020/06/the -power-and-potential -of-stellar.html o o J,
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Hanbury Brown and Twiss with the
Narrabri Stellar Intensity Interferometer

A Pioneered by Robert Hanbury Brown and Richard Twiss @ initially used in
radio -astronomy to measure angular sizes of two prominent radio sources:
Cygnus A and Cassiopeia A

A They developed a theory of intensity interferometry using light waves,
leading to the development of the Narrabri Stellar Intensity Interferometer
from 1963-1974

1 It produced reliable measurements and displayed the potential for astronomical
interferometry & measured angular size of stars down to 2.5 magnitude

A With the implementation of modern technology,
sensitivity can be improved

Picture retrieved from: https://www.astronomaestro.com/2020/06/the _-power-and-potential -of-stellar.html :‘“\,;
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Intensity Interferometry

A Uses two light detectors with extremely long baselines pointed at a single
astronomical source to measure excess rate of photon arrivals




Intensity Interferometry

A Uses two light detectors with extremely long baselines pointed at a single
astronomical source to measure excess rate of photon arrivals

A Stars: spatially incoherent

A The length of the transverse correlations coming from an incoherent source
contains information about the angular size of that source.

A There will be a measurable excess correlation of photons arriving at the two
counters.




Intensity Interferometry

A Measures the excess correlation of simultaneously recorded photons as a
function of:

1 baseline separation of the two detectors b
T wavelength 1

A Excess correlation provides:

1. Measure of uniform brightness of star (coherence function/intensity power spectrum)
2. Angular size of the source
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Advantages

v No need for mutually coherent local oscillators at different telescope
stations 9 only need digital electrical components

v Easily scalable for long baselines and multiple telescopes

v High optical angular resolution & dependent on baseline length which can be
arbitrarily large

v Rapid development in single photon detector technology can provide
increased sensitivity




Goal?




Goal?

To test the efficacy of optical
Intensity interferometry using
SNSPDs




SNSPD: Superconducting Nanowire
Single Photon Detector

An SNSPD is simply a
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A SNSPDs have high resolution and good quantum efficiency in the infrared,
making them advantageous in intensity interferometry.

A SNSPDs have not been applied to intensity interferometry before.

Picture retrieved from:
https://indico.physics.lbl.gov/event/815/attachments/1750/2119/APH_110_2018.pdf
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Key Components

A 35-inch -long dark box
A An LED light source (artificial star) with aperture in front

A Two optical fibers with collimators attached for focusing light at 1 micron
into nanowire & one stationary and one mobile for baseline adjustment

A All components mounted on optical breadboard




Preliminary
Calculations




Thermal Load

A Determine the photon flux of source
(artificial star)

Q4 0 ——

1 ny solid angle

1 6 : spectral radiance of blackbody, given by
Pl anckds Radiation Law

1 3 2 wavelength bandwidth (assumed small)
1 - [_]: energy per photon ("Q&)




Thermal Load
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Coherence Function

A Provides a quantitative measure of the uniform brightness of the star
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1 —angular size of source seen from fibers
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Coherence Function

A ldeal we 1 for resolved source
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A Limited to: distance between LED and fibers ( * ¢ 11Q}f

A Adjustable parameters to achieve we 1:

1 Smaller baseline T
1 Larger LED wavelength in IR range
1 Smaller aperture
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LED selection

A Need to achieve an optimal rate of photons for coincidence counting

A Number of photons per second exiting LED found by:

I O g—¢w
1O : Maximum Irradiance 0 radiant flux received per unit area measured at
a distance of ¢ Ttdt &

T-[_]: energy per photon ("Qd )
1 ax area of aperture hole &

A(-) 0 QQ0©b AN Q1 661 Q




LED selection

A Need to achieve an optimal rate of photons for coincidence counting
A Number of photons per second exiting LED found by:
I O g—¢w
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Experimental Design
0 Current Progress
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XY slip plate positioner

Mounted pinhole

Mounted LED

Optical post and holder




Miniature v-clamp for optical fiber
Aspheric pigtailed collimator on fiber

Optical post and holder

Dovetail mounting clamp
34mm rail

Dovetail mounting clamp

Fibers:
Option 1




Fibers:
Option 2

A Assembly nearly complete: need precise alignment of collimator
with beam via laser




